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ABSTRACT

In the past two decades since the advent of Kalman's recursive filter,

numerous algorithms for linear estimation have emerged. Most of these algo-

rithms are recursive and rely on solving a Riccati equation or equivalent

recursive equations. It will be shown how some of the classical problems such

as Linear Smoothing and Recursive Block Filtering problems can be solved

exactly by some new nonrecursive algorithms which are based on the Fast Fourier

Transform (FFT). Moreover, these algorithms are readily modified to generate

the Riccati matrix at specified times, if this is desired. These results are

then extended to a block filtering algorithm, where data is received and

smoothed recursively block by block. Real time batch processing applications

include image processing and array processing of signals.
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I. INTRODUCTION

In the past two decades since the introduction of Kalman's recursive filter

[1,2] several surveys of this subject [3-5] have exhibited different algorithms

for the same basic filter. For example, Ho and Lee [6] use a Bayesian approach,

Rauch et. al. [7] utilize a maximum likelihood principle, Meditch [8] uses a

projection theorem, Kailath [9] employs innovations, and Lainiotis [10] uses

the partition theorem to rederive the Kalman filter.

The conventional Kalman approach [1] involves the propagation of a state

estimate and the error covariance matrix from stage to stage. Other approaches

include the filtering algorithm by Fraser [11] which is based on finding the

information matrix. A family of square root algorithms which recursively

compute the square roots of the covariance matrix or of the information matrix

is associated with Potter [12], Dyer and McReynolds [13], Schmidt [14], Kaminski

and Bryson [15], and Bierman [16]. The Riccati equation plays a major part

in all of these algorithms. Recently, Kailath [17] and Morf et al. [18],

developed filtering and smoothing algorithms in which the Riccati equation is

replaced by the computationally advantageous Chandrasekhar equation.

After Kalman proposed the filtering algorithm, the smoothing problem was

subsequently solved in the state-space time domain by Carlton [19], Rauch [20],

Bryson and Frazer [21], Rauch et. al. [17], Meditch [8], Mayne [22], Anderson

et. al. [23], and many others.

The numerous algorithms that have been derived are mostly recursive in

structure and rely on solving the Riccati equation or equivalently the Levinson-

Trench normal equations [24] associated with the solution of Toeplitz equations.

4'



2-

In this report we present some new algorithms for fixed interval smoothing,

solution of Riccati equations, and block filtering problems that arise in linear

estimation theory for discrete, time-invariant systems. These algorithms have

several interesting features which make them attractive in the context of modern

digital signal processing. These algorithms are non-recursive, fast and are

based on the Fast Fourier Transform (FFT). For example, for ARMA models,

typical recursive algorithms require O(n2 N) operations, while the new algorithms

which utilize the FFT need only O((1og2N+n)N) operations to smooth N+l samples

of an n states, single input single output ARMA system with N >> n. Moreover,

our algorithms seem to be less sensitive to round off and truncation errors.

Finally since these new algorithms utilize the FFT and are non-recursive, they

could be used to process large data batches efficiently in parallel, and would

be well suited for VLSI architectures.

The smoothing algorithm developed here does not require solving the Riccati

equation so that one is not confronted with the associated numerical problems

such as insuring the positive semi-definiteness of the error covariance matrix

e.g., as in the square root algorithms. It is shown that the optimal smooth

estimate can be represented as a sum of two components. One component is the

output of a Wiener filter with discrete frequency response. This Wiener filter

is associated with a steady state periodic system which is observed for one

period. The other component, called the boundary response, is determined

completely by certain initial and terminal values of the observations and the

Wiener filter output.

Even though the Riccati matrix is not required in our smoothing algorithms, it

plays a fundamental role in a large number of problems. Many times it is desired

to find the steady state solution of the Riccati equation associated with a

linear, time-invariant system. In some situations, the given system is over-



-3-

sampled with respect to the Nyquist rate, e.g., in radar systems, where the

signal being observed may be a narrow band signal but the receiver bandwidth

is much larger. Hence it may be desirable to obtain the Riccati matrix at the

Nyquist rate, i.e., at equal lags of time. In section 5, it is shown that a

minor modification of the smoothing algorithm yields the Riccati matrix at

several instants of time via our FFT approach.

With the advent of array processors and array scanners, data is often

received in blocks, batches, packets, arrays or lines. Hence it is desirable

to consider filters which operate sequentially on blocks of data. Such filter

structures have been considered in digital signal processing for convolution of

a long sequence of data with a finite impulse response (FIR) filter. We

introduce a new so called Recursive Block Filter. As the name suggests, this

filter smoothes the data non-recursively within a block and recursively from

block to block. Suppose the measurements are received in blocks of N+l samples.
^i ̂i i

One is asked to find the optimal smoothed estimate, xO x. XN for i = 1.2....
given the observations, zk for k = 0,1,... iN where i denotes the block

t th

of the data shown below.

Block 0 N 2N+ 2 rN+1

1st : 2nd rth

It is an on-line filter in the sense that if one treats a time-block asdA
a unit or a packet of time, then one is asked to find the filter estimate xii

where i denotes the ith block, or packet. It is also observed that this filter

is similar to the fixed lag smoother, except that the lag of this filter is over

non-overlapping samples.

This recursive block filter smoothes data block by block and can be
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implemented on-line, while preserving the nice properties of smoothing as well

as all the foregoing advantages of the new algorithms. Also this recursive

block filter has the same computational complexity as our new smoothing algorithm.

In fact, by combining the techniques of the smoothing algorithm and that of calcu-

lating the Riccati matrix at equal lags, one easily realizes the recursive

block filter.

Applications of the recursive block filter can be found in communications

and telemetry where the fixed lag smoother is known to be useful, in image

processing where a block of data is available at one time, and in digital on-

line deconvolution of finite impulse response systems. Often in practice, a

discrete time-varying system is modelled as a piecewise time invariant system.

The recursive block filter can be extended to such models easily by simply

applying our algorithms to successive time-invariant blocks.

Our results utilize the fact that the fixed interval smoother, Kalman filter

and the associated Riccati equation can all be imbedded into a fundamental

boundary value problem. In Section 2 we show the relationship of the various

filters to their parent boundary value problem. In Section 3 we review the

permuted controllable canonical form of state variable models which we use to

develop our algorithms in Sections 4 and 5. Section 6 contains additional

remarks. The smoothing algorithm for a special case is derived in Section 7.

This provides a good introduction to the main ideas of the general derivation.

This section also contains some numerical examples.

-IL
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2. THE FIXED INTERVAL SMOOTHER

Consider the following discrete, time invariant system:

(2.1) N+ A!k + Bek

(2.2) Zk C4 + n k

where 4e R Ek.R, Zk cJRp , and A, B, C are constant matrices of appropriate

dimensions.

Assume that {Ek } and k are independent, zero mean, Gaussian, white

processes with covariances

E[Eke] = K6 kL

and

E[nkTj] = R6k,

where 6k,k = 0 if k ' k and 6k,k = 1. Also x0 is a zero mean Gaussian random

variable of covariance QO which is independent of {ck } and {n } .

The fixed interval smoothing problem for this model consists of finding

the best mean square estimate 4 of k for k = 0, ... N, given all observations

zk, k = 0, ... N.

This problem is equivalent to maximizing the conditional probability

P(4 zO' "'" ZN) for all k.

Applying Bayes rule and noting that all random variables are Gaussian, we get

[e.g., 26,27] the problem of minimizing

2IIII -ol k izk _ C41_kl 211 1A12 l + ZI N E 2
J 01 2k4 1kO 1 R k 1O k'1K-1

subject to the state equations(2.1) and (2.2), where 1'*A denotes the norm

induced by A. Using Lagrange multipliers this can be transformed into the
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following unconstrained problem

N JT - ^
m 3+ k+ll Ak k]

ERx k=O

The first order necessary conditions are obtained by differentiating with respect

to Ek ek and Xk+l:

(2.3) A - T R-I(z C; AT x 0

Ak CR(k -2 C~ k+l

(2.4) K - BT+ = 0
k k+l

(2.5) A + Be-k~k

for k= 1, .,. N.

Substituting (2.4) into (2.5) results in

(2.6) A =Af + BKB ,k= , ... , N4+1= l

and rearranging (2.3) we find

(2.7) xk = ATXk+l + CTR-1(zk - CA) , k = 0, ... , N

where, in the boundary term for k = 0

Qlo CTR I(z 0 -C ) ATX = ,

we have defined X Q olA For k = N we find XN+l = 0. Thus equations

(2.6), (2.7) and

(2.8) -0 = QOXO ' XN+l = 0

define a two point boundary value problem which is equivalent to the original

smoothing problem.

A standard approac& to solving the smoothing problem is by constructing
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the smoothed estimate as a combination of a forward and backward filter [22].

Forward Filter:

(2.9) Rk+ =ARAT + BKBT - G.H.G;T R = QO

(2.10) Sk+l = Ask + GkHk[zk - CSk]; sO = 0

where

T Ti1Gk = ARkC T and Hk = [R + CRkCT-

Backward Filter:

(2.11) Xk = [I - CTHkCRk][ATXk+l + cTR-l (zk - CSk)]

XN+l =0

Then the smoothed estimate is given by

(2.12) = + Sk

Remarks

i) This method is commonly referred to as the two sweep method.

ii) Here Rk is the solution of the matrix Riccati equation (2.9), and Hk is

the covariance of the error (zk - CSk).

iii) The sk obtained from (2.10) is the one step predictor E[xk+liz2, k]

which arises in Kalman filtering.
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3. REVIEW OF THE PERMUTED CONTROLLABLE CANONICAL FORM

The computations required in solving boundary value problems like (2.6) -

(2.7) are simplified significantly when canonical forms are used. We will

concentrate on the use of the permuted controllable form [28], but other cano-

nical forms like the permuted observable form can also be used.

In the following brief review it will be assumed that the system

(3.1) 4+l = Ax + BuR

(3.2) z k = Cxk

is controllable, i.e., the controllability matrix

(B, AB, ... An-lB)

has maximal rank. The smallest positive integer y n such that the matrix

My = (B, AB, ... AY-IB)

has maximal rank is called the controllability index. Then the permuted control-

lable canonical form can be expressed as

[l] = + yl ~ .~F Uk(33 0 PP-I 0

xy k+l A, Ay X Jk -

(3.4) Zk : C

where we assume rank B = m without loss of generality. Here the matrices

Pi are projection matrices of order rixri+ l, and ri  ri+ I. This can be viewed

as a vector ARMA model.

We will now describe the change of coordinates from (3.1) - (3.2) to
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(3.3) - (3.4) defined by the transformations

PA-= pApl B pBQ_, C _l

and

x- = Pxk

Uk : Quk

The exposition follows [28]:

Step 1: Formation of the Controllability Matrix

(3.5) CM = [B, AB, ... An-IB]

Step 2: Choice of Linearly Independent Vectors

From CM, a set of n independent vectors, foming the matrix U, are

selected as follows:

(3.6) U Lbl b2 ... bm I Ab1 Ab2 ... Abm

where bi is the i th column of B.

Step 3: Formation of State Transformation Matrix P

From U-1 , a selection of rows, ei for i = 1, ... m is then made, each

row corresponding to the last vector in each group of bi. Then the

transformation matrix, P, is obtained by multiplying the set of the

rows being selected by A, that is
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el

e A

AiA

(3.7) P e

i2

e2A

emA m

Step 4: Formation of A, PB and C

As discussed before, T and C can be calculated from

P A P-1

C p
-1

while

0 0 0

lX

0 0

PB= 0

x 1 x

0 0

0

x x1

Step 5: Formation of Input Transformation Matrix

The transformation of input requires finding the matrix



L xx.. .X

where each successive row of Q corresponds to the non-zero rows of

the matrix PB.

Step 6: Formation of i

Having found the inverse of Q, B can be computed from

: P B Q-1

Step 7: Permutation of States

The final form of the system is obtained by permutation.

Example:

To illustrate the procedure, an example is given below:

Assume the original system has the A,B,C, matrices as follows:

0 0 -4 0 4 1 0
1 0 -8 0 -4 0 0

A= 0 1 -5 0 -l B= 0 0

0 0 0 0 0 0 1 1 -1 1 0 1

0 0 0 1 -1 0 0

The controllability matrix, U is found as

00 01 0 0 0 0
0 0 1 0 0

U[ bl b2 Abl Ab2 A2bl] = 00001

0 1000

00010J

iL
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and
1 0 0 0 0

0 0 0 1 0
U- = 0 1 0 0 0

0 0 0 0 1 I

0 0 1 0 0

Because A and A b2 are the fifth and fourth columns respectively,

e and e2 are chosen to be the fifth and fourth rows of U respectively.

The transformation matrix, P, is computed next as:

e
e 1A  0 0 1 0 0

0 1 -5 0 -1

P = eA 2  1 -5 17 -1 2

e2 0 0 0 0 1

0 0 0 1 -1
e2A

and

8 5 1 4 1

5 1 0 0
p-1 1" 0 0 0 0

0 0 0 1 ]
L 0 0 0 1 0

After the transformation, the system has the A, C matrix as:

F 0 1 0 0 0
0 0 l 0 0

A= -4 -8 -5 -4 -3

0 0 0 0 1
0 0 0 0 -1

-MUNN=
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[ 1 2 021]
1=-4 -1 0 0 0

while
0 0
0 0

PB = -
0 0

0 1

A further transformation of the input vector will yield the desired

system matrix B as:

00

0 0

=PBQ- = 1 0

0 0
0 1

where

o 10

The final step is done as follows: Let the states of the transformed

system be labelled as:

Therefore by permutation three subgroups will be formed.

They are:

T he s s e wil hav the2 
T

The system will have the form of
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0=1 0 0 + u

0 0 0 1 2 0 10
3k  [_-4  -10 0 -

Therefore in this example

0 1 1

P1 A[I 0] , P2A [lo ii

- =A -C2 [ 1 -C3 0

For the case of a single input, single output system, the transformed

A matrices are more simple, and will take the following forms:

ala2 -. a n

The method to find the transformation matrix, P, in this case is slightly

different and is given as follows:

Let the characteristic polynomial of the matrix A be

A(A) = [Det(AI-A) = kn + a A n 'l + ... + an A +

Then from the controllability matrix [B AB ... An- B] and the coefficients

of the characteristic polynomial, the inverse of the transformation matrix, P-l
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is found as

P-I 1 [q, q2 ' qn]

where

q n = B

qn- Aqn + alq = AB + alB

qn-2= Aqn-1 + '2q = A2B + clAB + ct2B

= n - I  In-2B
q= Aq2 + cnqn= A B + B + ... + nl B

Notice that there is no need to perform any permutation on the states since

the transformed system is already in the desired form.
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4. THE SOLUTION OF A TWO POINT BOUNDARY VALUE PROBLEM VIA THE FFT

Now we turn to the method of solving the boundary value problem associated

with the fixed interval smoother. The following two point boundary value

problem is considered.

I.

(4.1) H 0 P- : + F" : O

k+l Al A Lxj Lo . .o+

(4.) 0T A+ CTR l(zk- C4) k = 0, ... N

'k 10 - - J - k+l

with boundary conditions

4= QO+ P

and
! -N+I : w

where Q0, i0 and w are assumed to be specified. The problem (2.6) - (2.8) in

controllable canonical form is a special case with the choices V0 = 0 and

4N+1 = O. These general boundary values are needed when the Riccati matrix

and block filter algorithms are derived. The Pi are projection matrices and

C = (c ... Cy) will be partitioned accordingly.

For convenience we define Im to be the identity matrix of order m, PO 0 0,A m k ,X A  AA

=, X= 0 for all k, K = -ImI C 0, and C = 0.
Y kk 'ky+l m ~y+l =

We will now discuss how the problem (4.1) - (4.2) can be solved in terms

of the m dimensional vectors xX rather than the n dimensional state vectors

xI. It follows from (4.1) that

(4.3) 
i+l

4+1 = i4 for i< Y

Applying (4.3) recursively results in
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(4.4) x ixky+i for i < y k y-i

where

y-1Pi ^  PjP= IIP.

j=i

For later convenience, this expression will be extended to all k 0 0. This

can be done by using (4.4) as a definition for x.,. when k < 0. The

result is an equivalence class of vertors for which

x 0 = +i , i < y.

Note that this is only a convenient notation, and does not mean that the

original model is extenood backwards in time.

y A
From (4.1) we get the h: st component vector xk+ Xk+ as

(4.5) Xk+l A + K k+l

Ay+l m ai Ai w PY  = Im  this becomes

(4.) x~l= i-A+K
(4.6) Xk+l AiXk-y+i + KXk+l

or after solving for X k+l:

(4.7) Xk+l 1 i xk-y+i, 0 e k e N-1.

Similarly, equation (4.2) can be expressed componentwise as

i = AT= T i- 1 i
(4.8)-k iXk+l i-l-k+l k i = , ... y

where 0 by definition and Ck = (zkC is partitioned as
=k zk-C~

(4.9) f i CTR'I1 (Zk'CN)k
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or in terms of xk as

(4.10) fk = CiR- (zk - Cjx
kjI k-y+j~

where C. C.P. Applying (4.8) recursively we obtain (see (A3))

-T
(4.11) Ak (A Aik+i+1 + P fY+)

i=0 y-i k+i

Substitution of (4.7) and (4.10) into (4.11) results in

*Y-l Y~+l
(4.12) j D y xk.y+j+i Zk 1 < k < Ni=-1 j=l1yijky+~

where

(4.13) D. . AiK A. + C.R C. C 0

and

(4.14) i=0 -i k+i

After an index transformation (see (Al)), it is possible to collect terms

involving xk+Z as

~= -Y(4.15) A tXk+9, k 1 l 5_ k i5 N-y .

Here

- Y+l
(4.16) A. for X Z 0

and

(4.17) = AT for Z s 0
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If we write out (4.15) for k = 1, ... N-y we obtain the system

(4.18) Fx-0
LO Y x yjN-

By putting the first and last y subvectors on the right hand side, we obtain

a perturbed block Toeplitz system:AO. A°0 R
(4.19) [A~.. O F: ] [L +[! ]

• •
LO A- AO0 XN-Y LzN-y ,_ Tj L-

where A_... A_, FXyl rxN-y+l1

S o - L [X L XN

If we also define

^i [ and t [x : x

then the boundary conditions lead to equations of the form (see appendix)

(4.20) GOi = Gl-i + zi

and

(4.21) TO t = + t .

where z and zt depend on the observations and are defined in the appendix

(also see Section 5). These equations can be used to convert (4.19) into a

system involving x1, ... XNY only:
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A0 0 1(-V i + ^
(4.22 "" A i L;x ] 21 E(G[ ) - ( i + x z

0

0 A O N-y _2N-y] ET(To)- (  t + zt)

In order to solve this perturbed block Toeplitz system via the FFT, it will be

rewritten as the perturbed block circulant system

(4.23) Hx z + J

where

AO Al A Y o 0o A-Y A -1

.iAo A0\ _ Y
AA

H A

Y 0 Al1

Al  Y  A_y A AO

0 0 a0 1

L0 Iy 1 " 
an E T(TO)FITI

[LE J YE(T)l

Eqn. (4.23) is solved in two stages. First the 2my boundary terms

b x
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are determined, and then x can be obtained by circulant deconvolution [28].

When (4.23) is multiplied by JTH-1 we get

(4.24) b = JTH- I + JTH-_JJb or

(4.25) b = [I T - TH-1]-IJTH- 1

Finally, x is obtained from (4.23) and (4.25) as

(4.26) x = H-I + H- I J4b

Eqn. (4.25) requires inversion of only a 2myx2my matrix; H-1 2 is a circular

deconvolution that can be determined via the FFT. Once b is known, then (4.26)

gives x easily. Since JPb is a sparse vector containing only 2my non-zero

entries, HI JTb can be computed either directly if 2my<<1og 2Nm or via another

FFT based circular deconvolution.

Remarks

There is an alternative to the approach presented which transforms

(4.15) into a perturbed block Toeplitz system by extending the coefficient

matrix to a square matrix:

0~ i-- -* A- 1 ~ 1 ER

F 0

A

-Y AY = N-0~

Lo J_, LLX .3 IIJ
The dimensionality of the system increases, but if N is a highly composite

number there may be advantages in speed when the FFT is computed.

As.
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5. ALGORITHMS

Initial ization

The proposed algorithm to solve the two point boundary value problem and

other related problems will now be stated. We start by summarizinq the definitions of

the necessary quantities.

k -k' k , 0' 'Y m

=-I 'C = 0

x0  _Jy-1 m y N  
XN-2y

!-l t

Pi=L4 ' LKJ Pj A- I xP" Ci -yC
X jl

facto ar not imlmne a mari muiplcatons

i j = AiK i- + -CiR j
^j ^

Note that P.contains only zeros and ones, and thus products with P. as a

factor are not implemented as matrix multiplications.

k F Y - T Y - l 0< .Z

AZ:AT for -y 5 X 5 0

H = block circulant matrix of order N-y whose first row is

(Ao' AI' ... Ay 0, 0 , A_Y , .. A_, )
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S diag(I ii)Q-1 diag(P1  ... ,P

and let S [da y 0Iar1

G9 r + S1, . 1,9, i 'g,

i'k 0 if i>

- ET

V0=(0 ... K) v ~ VAT], where the V. are mxn matrices.

W1= T RT1 , i = 0, ... y-1

F01 = Fi~y-1  0 F Fi4-11  F i 4-1 4- Wit. for 0 i < y ,1 j y

0 { i~ + Fi,j if 1 y-i+l
j~ otherwise

0 j<y-i+l

T i A, j* y-i+l
j-y+i-l

A -~ - W i-~ -CZ otherwise

T 11 - E(G)1G 1 T 12 = E

TP21 E - T22 ET(T ~Tl



-24-

Find the inverse of the block circulant matrix H, and then perform the LU-

decomposition of

= - jT'j -1 J

(i) Algorithm for the Boundary Value Problem (Figure 1)

Step 1: Perform the FIR filter operation on the observations zk to obtain the

sequence - T Rz k Y-T .Rz k+j 1 < k < N-y

j=O -

Step 2: Extract the initial and terminal variables z and z

k-I
ki =T -I sI~
yk = CkjR z. + ; 1 <_ k -_j=O k

it~~~ ~~ k- k -
k-I+v k y

k = y' Wk-j_ ZN-j k-_N+l
j=O

Step 3: Compute

JFE(G)zlib = _/[ E(o-lt-,t 2 2b + o

L E T (TO  _1_

Step 4: Perform the block circular deconvolution

y H-1 _

Step 5: Find

b = I-l T

Step 6: Determine the estimate x as

x= y + H-IJTb

by circular deconvolution.
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Step 7: Determine the boundary value estimates

0~ -1 1 i iR (GO  [G x+

x = (T 0 1[T x + it]

(ii) The Fixed Interval Smoothing Algorithm

If we let p 0 = =N+l 0 in Fig. 1, we arrive at the fixed interval

smoothing algorithm. The observations are passed through an FIR filter with

= tT R 1, 0

impulse response C : R -yk,O. The resulting signal {zkJ plus
S n y+k  -+k

{zb} is deconvolved by H which is a circular convolution with the elements

of the first column of the inverse of the block circulant matrix H (see

Appendix B). Boundary elements of this filter output are extracted by the

projection JT, multiplied by boundary filter gain f-l, and then injected into

a larger vector, which is again deconvolved by H- l to obtain the boundary
b b

response y . The final estimate xk is obtained by summing the responses Yk and yk"

(iii) Algorithm for Solving the Riccati Equation via the FFT

The Riccati matrix Rk (see (2.9)) can also be found from (4.1), (4.2),

if it is only desired to compute R for fixed N. To derive this method,
N+ I

suppose zk = 0 for all k. Then (2.9) implies that sk = 0 for all k. If we
set A i = el' the ith unit vector, then (2.12) implies that

xN+l = RN+le
i

i.e., the ith column of RN+l and hence the matrix RN+l can be obtained as

solution of the following matrix version of (4.1), (4.2):

(5.1) X TA X+ BKBTk+ ;

(5.2) A = ATA T - TRICX 'N+l n

k" -4+ "-X "N
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(5.3) RN+l = XN+l + BKBT

Thus, R is the response of a boundary value system excited by an impulse

N+ 1

In at the terminal boundary. As a result, the foregoing algorithm for solving

such boundary value problems can also be used to construct the Riccati matrix

RN+l columnwise.

Conceptually, it appears that n consecutive vector boundary value problems

have to be solved. However, there are some significant simplifications which

reduce the problem to solving one circular deconvolution problem of size O(N_

and one matrix inversion of size 2my. The steps 1 through 7 given above are

replaced by the following steps obtained by setting zk = 0 in the main algorithm.

In the following we will use uppercase variables to signify the fact that X, A,

etc. are now matrices.

Step 1: Extract the terminal variables

2t = = V
Zk Vkn k

Step 2: Determine the terminal y submatrices it of the block vector i

2t A UT(TO)-1t

Step 3: Compute the block vector J Y as

Ty = jT -[I 0t]

Note that only the boundary values are needed in the sequel, hence direct con-

volution may be more efficient than circulant deconvolution via the FFT. The

order of jTH-1J is (2my) x (2my).

Step 4: Find the boundary values

B = Y-IjTy

where D = [I2m y - jTH-lj1] as before.

t .... -- - d l " illm - _ im
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Step 5: Recall that B = Ft 1 so the last components t are obtained from

L Rti
t 0TO x TO) -let (see (4.21))

Step 6: Using (4.21) and the elements of t we can obtain XNs the state

estimate at time k = N. This gives RN+l via (5.3). This algorithm is illustrated

in Figure 2. Steps 1, 2 and 3 above are equivalent to circular convolution

of the matrix sequence [0, 0, O , Z ... Z t] with [/I-k drid extract; :1
1' 2'I

only the boundary values of the output Yk" The FFT algorithm is needed only
-l*

once to compute [H- I]k,which are the matrix block elements of the first column

of the block circulant matrix H - . Assuming that the systems in steps 4 and 5

are solved by LU decomposition, and the LU decompositions of : and T0 as well

as the matrices T and JTH-1J are precomputed, the computational effort for

obtaining RN+l will be approximately 6n3 , and does not depend on the number

N which compares favorably with the direct recursive method (2.9) - (2.10)

2
which has a complexity of O(Nn ) when A is in the given canonical form. The

savings are even more dramatic, when the algorithm is used to compute

R(N+I), = 1, ... L, since only the matrices T and 0 will have to be updated

at each step. We will elaborate on this point when we discuss a recursive block

filter in the next paragraph.

(iv) Recursive Block Filtering

As an application of the ideas presented so far, we turn to a recursive

block filter, i.e., a filter which smoothes one block of data at a time.

This will be an approximation to the global smoother, and can be used

more readily, when data is only available in blocks, or when a time variant

system is modeled by piecewise time invariant system-.

The block smoother operates just like the global smoother, except for the

initial conditions. If the blocks are indexed by r, then the initial covariance

for the block r is RN+I,r-l' assuming the block size is N, where RN+l,r_1 denotes

. . . .. . . ... . .. . . ... . I lm ln-m
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the Riccati matrix. The initial value XOr also has to include the one step

predictor sNlr1 from the block (r-l). Thus, the block filter is of the form

(5.1) Ak+l,r : Akr + BKBT-X
5.r T+ r r Z k+l ,r

= + C' [z ,r

(5.3) r O, ,r r+ k ,r =

Qo,r = RN+I,r-l' 1'r = SN+l,r-I

This algorithm uses the two algorithms previously described recursively.

Step 1: Set r = 1, initialize the parameters by setting Q0., = QO' S N+l, 0.

For block r,process the data using the boundary value algorithm for (5.1)-(5.3).

StepZ: Find the solution RN+lr of the Riccati equation at the end of the

data block using algorithm (iii).

Step 3: Update the following matrices:

Qo,r+l = RN+l,r

Ir+l = SN+l ,r = A-,r

0
then use Qor+l to update G , 0, and Y.

Step 4: If all blocks are processed, stop, otherwise set r = r+l and go to

Step 2.

This algorithm is illustrated in Figure 3.

IJ
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6. REMARKS AND COMPUTATIONAL COMPLEXITY

a) We note that the above smoothing algorithm is nonrecursive and does not

require the solution of a Riccati equation or equivalent recursive computa-

tions such as the solution of Toeplitz systems via Levinson-Trench type

algorithms [24,25].

b) From Fig. 1 the smoothing filter output xk can be written as

(6.1) Xk k + Yb o b
k 'k k k Xk

o A H-1o b lb + b
(6.2) xk = [H k' xk = [H ] k Yk

The solution component {xo} could be considered as the FFT Wiener smoothing

filter output, which is obtained by first sampling the Wiener smoothing

filter output in the frequency domain followed by its inverse Fourier

transform. The frequency domain Wiener filter equation is obtained by

considering an infinite duration filter in the steady state. Specifically,

the steady state, dynamic system equation can be written as

(6.3) Xk l Xk-y+-l = k-l

(6.4) zk : CkXk-y+z + n k

where k (-ox), and

(6.5) X(M) : xkexp(-jkw)

denotes the Fourier transform of {Xk}. Then the frequency domain Wiener

filter estimate X°(w) for the smooth estimate of Xk is

(6.6) X0(w) [C*(w)R Ic( ) + Sx (W)Tc*(w)R-z()

x
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where S (w) and R denote the power spectrum densities of xk and

respectively, * denotes the conjugate transpose, and

(6.7) C(W) = Cexp[-j(y-k)w]
-=l

The quantity Sx (w) is obtained from the state equations (6.3), (6.4) as

(6.8) -l((I Y ] Y~l -T-
(6.8) SA() A P K Akexp[j(k-k)w]

x k=l 9,=l

Now defining

(6.9) H(W) = C*(w)R-Ic(W) + Sl (w), 20 (w) C*(w)R- Z(W)

we can write (6.6) as

(6.10) H(w)X0  = ?()

which gives the discrete Fourier transform of (4.12) at w = N-'

N-y
n = 0, ... , N-y-1.

Thus if we sample (6.6) at w - , n = 0, ... M-, i.e., let

M-l^ 2nw
Z((w) = z n 6(w -M)

n=0

M-I
xO(W) 06 =  o(w toe

in (6.6), and take the inverse Fourier transform, we obtain the solution

of the circular deconvolution problem defined by

x 0  H'1 2 for M =N-y

7-!7
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Moreover, it is easy to verify that {x°} and {2 n are the M step inverse discreten n
Fourier transforms of {x k} and {2k } respectively, and could be implemented

via FFT.

c) If the system is not controllable, but remains observable, the above algorithm

can be modified by working with a canonical observable model. Details are

left to the reader.

d) The algorithm given above is based on an extension of a method of inversion

of banded Toeplitz matrices to banded block-Toeplitz-matrices [29].

e) In the special case of single input systems, the dimensionality is signifi-

cantly reduced. Moreover, the block circulant matrix H becomes a symmetric

circulant matrix, and thus also the Fourier transform of the first row

of H will be real, which reduces the number of operations.

Computational Complexity

We discuss separately the initial computational effort, which can be

computed off-line. Secondly, we address the complexity of the data processing.

Assume the input dimension is m, the state dimension is n, the output dimension

is p.

Initial effort: (let M = N-y)

(1) Find K- and R_ in m3 + p3 op.
(2) Find K-1 Aj, R 1Cj in n(m 2 + 2) ops.

(3) ATK'IAj, CTR- 1 C (p 3 + m3 ) (2 ops.

(4) y matrices Vi are needed 2ym 3 ops.

(5) F requires 2ym3 ops.

(6) Set up Y in I-(my) 3 + (y(y±l))m3 + 4 -M

..... . . . . I?.. . . . i 1 . . . . . .
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(7) Find the LU decomposition of [I - JTH-jP] H _ 2my

3 3

(8) Find H-  2m2 MlogM + W3

(9) jTH-lj ... 8y3m3 operations

Total: M(2m2 1ogM + m3+ m3  323 + -y)+ + np+ MY

Data Processing

Steps 1,2 Nnp + y 2mp ops.

Step 3 4(my) 2 ops.

Step 4 2mMlogM + Mm2 ops.

Step 5 2 • (2my)2

Step 6 2mMlogM + Mm2 ops.

Step 7 4(my)2 ops.

Total: Nnp + 4mMlogM+2Mm 2 + 16m2 y2

These operations are for the controllable canonical form. Additional operations

are required for transformation of the system parameters and state estimates

if the given system is not in this form.
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7. EXA14PLES

Example 1: To illustrate the general ideas of the derivation of the smoothing

algorithm via FFT we consider the special case of (4.1) - (4.2) where m n,

y = I and the covariances K, Q and R are identity matrices.

(7.1) Xk+l = Axk +X k+l

(7.2) Xk = AT k+l + C T(zk-CXk), k = 0, ... N

with boundary conditions

Xo = X0 and XN+l = 0

When (7.1) is solved for Xk+l and the expression is substituted into (7.2)

we obtain

(7.3) xAk -Axkl T(xk+l-Axk) + CT(zk-Cxk), k = 1, ... N-l

We can collect terms to get

(7.4) -Axkl + (I+ATA+CTC)xk - ATxk+l cTz k

If we define

1  A , A 0 6 (I+ATA+cTC) A = T

then we can write the resulting system (7.4) for k = 1,... N-l as

A- Xx Az0XI2
[A 1  0 1 0i

I'I-0 T(7.5) 0 A j= where z k = C z k

By putting the boundary terms involving x0 and xN un the right hand side we

obtain the perturbed block Toeplitz system



0 1 11
(7.6) V0 + -

A A0  x N N

Now x0 and xN can be eliminated by applying the boundary conditions.

The initial condition x0 = A0 combined with (7.2) leads to

(7.) 0  T T
(7.7) x 0 = A X1 + C (z0-Cx0

) .

(7.1) can be used to eliminate X.

(7.8) x0 = AT(x -Axo) + cT(zo-CXo).

Collecting terms we obtain the initial relationship

(7.9) (I+ATA+CTc)x0 = ATxI + CTzo

which is clearly uniquely solvable for x0 in terms of xI and zO.

The terminal condition XN+l = 0 combined with (7,2) leads to

(7.10) xN C T(zN-CxN)

(7.1) can be used to eliminate N:

(7.11) xN - AxN-l = CT (zN-CxN)

Collecting terms we obtain

(7.12) (I+CTC)xN = AxN. + CTzN

which is again uniquely solvable for xN in terms of XNl and ZN.

Thus (7.9) and (7.12) can be used to eliminate x0 and xN in (7.6): let

G 0 I+AT A+CT C and T0 I+CTC, then
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A 0 A 1 _l T G (A x+C z.)

(7.13) A +

0L 0  X1 L0-1Li

Finally, this problem can be rewritten as a perturbed block circulant system:

(7.14) H 2 z_+ J, where

L N - I - L xN -

A- A1 0A 1 -A l GlCTz 0
_ 00

010
_0 0 0 A 1  A0  L-A 1CTzNI

im 07 F ,-'lAT 1 7oj 0
0 1ra ml - T 0IA]

L l
letting b = xN] we can first solve for the boundary term b as

(7.15) b = JTHlz + JTb

This is a system of order 2m. Finally the components x2 ... XN2 can be

obtained via FFT as

xH 
1  ( +J b)

| I II .. . . - - N
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Example 2 (A detailed solution of Riccati Equation)

Suppose the Riccati matrix R8 has to be evaluated for the following systems

parameters:

F 01

A L=2-l -I.2 -I3 K [= 0 , R = 1

L-2.1 -2.2 -2.3

0 1

i.e., this is a system with two inputs and one output. Note y= 2 here.

We obtain

A L 6.62 8.98 1 1.3 2.30 2 0 0

7.41 0 5.82 7.13

GO 0 0 1 0 0
5.82 0 13.69 6.62

7.13 0 6.62 8.98

G 1 F -2.1 0 0Gl  = 0 0 0

-7.02 -9.33 -1 -2,1

olL-1 .3 -2.3 0 0

S1.2 1.3 1 0

TO L= 3.2  2.3 0 2

-o.2 0 0 -1.2

L-2.3 2 0 -2.3
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Fo 0 -1 0

T 0 0 -2.1 0T1

-1 0 -1.2 -1.3

L-2.1 0 -3.2 -2.3 1
The first block row of the block circulant matrix H-  is obtained as

H 1.= .594 -.181 -.124 -.479 .059 .081 .059 -.077 -.124 -.001

11 L.181 .656 -.003 .134 -.077 .045 .081 .045 -.479 .134

PHI

.983 -.008 -.004 -.009 .071 0.000 -.202 -.031

.024 1.029 .001 .002 -.119 0.000 -.752 -.051

.050 .041 1.007 .014 -.000 0.000 .152 .022
-.008 -.009 .001 1.001 .001 0.000 .142 .089
.256 .188 .024 .051 1.070 0.000 .105 .091

-.003 .058 -.002 -.004 .020 1.000 .058 .035
-.714 -.897 -.114 -.239 -.160 0.000 .811 -.199
.143 .219 .064 .134 -.069 0.000 -.093 .912

PSI

4.462 5.639 .704 1.478 1.000 0.000 7.020 1.300
5.639 7.232 .875 1.837 2.100 0.000 9.330 2.300
.704 .875 .116 .243 0.000 0.000 1.000 0.000

1.478 1.837 .243 .511 0.000 0.000 2.100 0.000
1.000 2.100 0.000 0.000 1.057 0.000 2.766 1.217

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7.020 9.330 1.000 2.100 2.766 0.000 10.471 3.153
1.300 2.300 0.000 0.000 1.217 0.000 3.153 1.429

Finally,

F 2.302 -3.903 -6.7891

R8 = -3.903 8.948 13.787

L -6.789 13.787 24.976

Example 3: (Computation of a Riccati Matrix)

This example illustrates the advantage of the FFT method over the two

sweep method with respect to roundoff propagation. The systems parameters are
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0 1

A 0 1 0] B [ 0

12 - 5 12 1

C: 1 j ,

.050 0

K 1 0 J R= .16,Q0 L .0 0,0 .49 0 0 .091

This is an unstable dual input single output system.

a) When the FFT method is applied with N = 7 we obtain

2.3035 1.5797 -10.807

R 8 = 1.5797 2.7446 - 6.2513

-10.807 -6.2513 70.4289

R16 z R8, i.e., this is approximately the steady state solution.

b) The two sweep method gives

988 1.307 -9.2501
R3 = 1.307 2.248 -4.667

-9.250 -4.667 67.520

2.166 1.494 -10.156
R5  1.492 2.677 - 5.825I

-10.175 -5.821 67.380]

[ .01: 1.531 - 9.7881
R8  6 .157 3.538 - 24.617

41.746 3.024 -139.93

R13 contains elements of order 106, which shows the divergence of this

method due to instability.
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Figure 4 shows the evolution of the element Rk (1,1). The equally spaced

dashes show the sampled values using the FFT approach, and the other line

shows the unstable behavior of the recursive method. Note that the line had

to be clipped.

Example 4: (Smoothing and Recursive Block Filtering)

The following two examples illustrate solutions to the linear smoothing and

recursive block filter problems. The performance of the filter is compared for

different block sizes. The following system parameters were chosen:

Example 4.1: m = 1, n = 2, p = 2

01o K °.0o, R ol 0)A -1 C =  5 'Q0

(see figures 5-8).

Example 4.2: m = 1, n = 2, p = 2

A) Cn [.1 .5) (.36 K 1, R= 4 0)

-.1 2 C 1.5 1' 0 =  .49'

(see figures 9-12).

Note that the variances of the noises are considerably higher in Example 4.2.

For both examples the results are presented in the same format. The solid

curves display the exact values of the states xk = 4(2),and the dotted curves

refer to the estimates. Thirty data points are shown in each case. The

following table contains the pertinent information. MSE refers to the mean

square error between the exact and estimated values. Figures 7, 8 and 10, 11

are recursive block filters with different block sizes. Notice that the block

filter estimates are quite close to the larger interval smoothing filter

estimates.
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Example 4.1

Figure number of number of block size MSE
observations used blocks

5 51 1 51 .4497

6 30 1 30 .7448

7 30 2 15 1.60

8 30 3 10 1.099

Figure number of number of block size MSE
observations used blocks

9 51 1 51 3.711

10 30 1 30 3.811

11 30 2 15 4.872

12 30 3 10 4.115

Example 5: (Sampling of a Riccati Matrix)

This example shows the evolution of the Riccati matrix Rk for the following

systems parameters: m = 1, n = 2, p = 1

A = [- - 194 Qo = ( , C = (l,l), B = ), R = .2, K = .1.

Figures 13-15 display the components of Rk using the two sweep method as well

as the sampled values using the FFT method. Note that the FFT method gives the

same values as the recursive method at the sampled instants.
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Conclusions

Fast nonrecursive algorithms for solving the discrete time fixed interval

smoothing problem have been presented along with extensions to determine

samples of the associated Riccati matrices at fixed times. Both algorithms

have proven to be useful in implementing a block recursive filter to process

data in batches.

The advantage of these algorithms does not merely lie in a reduction of

the computational complexity compared to more conventional approaches. Their

nonrecursive structure allows parallel architectures and the use of FFT

firmware which results in faster execution times, and possibly a reduction

in the accumulated roundoff error.
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APPENDIX A

A.1 A Technical Lemma:

Lemma (Change of Indices of Summation over a Rectangular Grid):

J2 i2 i2+jl-l 2-il J2+il-l -i i2+2 +2

(Al) l £:l+Jl jjl 2i 2+j1 J2. a j  iI+J2 JI-i 2 a

provided (j2 -jl) _ (i 2-il), where k = i+j. j

Proof For simplicity let i= i-i1 and j_[= J-j"i

Then by assumption 1-2 -  Let k_ = i+_.

(See Figure 16). -------

Then

for i2 < i <

! -2 _- - -for12 2 < < J2 : 2.-i 2 
<  2.-< -

for-ik I 1 12 Figure 16

describes the range for j. Note that in the special case i2 = 12 the middle

formula is redundant. We now have to find the corresponding limits in terms

of ij and 9 = i+j. Since 2. = 2_+i1+jI, or 2. : 2-il-j 1 these conditions become:

For k-i 1 -J 1  i2 -i1  : 0 e J-Jl t 2-il-Jl

For i2-i< 1 5 9 j 2 -Jl : k-il-Jl-(i 2 -il) i-il < 2'i-jl

For k-i 1 -J1 > j2-l : 'il-Jl-(i 2 "il) < J- J

This can be simplified to:

For k j 1 +i 2  : l j -< 2-il

For i 2 +J 2 < J2 +il : 2-i 2 < j < 2-i l
For 2. > J 2 +il . -i 2  < J2

Again, if i 2 -i I = j 2-Jl, the middle formula is redundant. This proves the
2 -
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result and also its following corrollary:

Corrollary: if i2-iI = j2-Jl, then

iJ2 2 i l+J2 -il i2 +j2 j2
(A2) a j a j ' j +  a,_jj

j=Jl i=1 ij ii 2+ J= -ij2

A.2 Initial Conditions:

Lemma: 1l = ATk + f
-k 1k+l + k

(A3)
A X +i + i 11 jPj(Ai j Xj+k+l + f k+

iXk+1  k .= = k3j

Proof: The case i=l follows from (4.2). Then use induction. For i=2 we

obtain from (4.2):

2 ATXk+ kTil 2
2k+l + 14+1 + fk

T T T pTfl 2
SA2k+l + PiAlk+2 + lk + fk

which is the claim for i=2. Now assume the result is correct for i. Then

from (4.2) we find

i+l T Ti +AT 1
= Pi-k+l +i+lk+l "k

By the induction hypothesis we can replace Xk+l" It suffices to show thatk1

jTI ilP I(AT k + fi-j+l
i-k+l j=1 9=i-j+1 i-j+lxk+j+l + f k+j

Now
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T-I i " T "
PTi T T i+ J i-j  | . + j =

'Pi[Aik+2 + fk+l = 1 PT3j(4-ji+k+2 k+j+l

TAT k T I i-j , • •

3A 11 TT + + + f++)
i i k+2 i k+l +j 9 i -j k+J+2 +k+j+

i i k+2 k+l ) + Pk i-j+l j+k+l + j

j=2 Z=i-j+l

PTAT +Zii PT 1F~ x f1J

j=l II _jP iAT+lj j+k+l + ,

which had to be shown.

i-l
With the convention II P I, we can write (A3) for k=O as

k=i

i= iTj T

jiO T=1_PZ (Ai_j~j+l + fl-J)•
i-i R-i2 1

Now we can use (4.7) and (4.10) to obtain

i-i T T Rl 1 j T - }

Ckxjj) z kkj-y+k
j=Oky=i-j -j- -

Using (4.13) and (4.14) this gives

i-ly+ i-lT
I j=0 - Dii-j,kXj-y+k + ij R zj9:i j:O k~l j=O i -

In order to collect terms in x we have to change indices. Use (Al) and

the convention

t=y+l i

to arrive at (jl , 19 j2 = +1 y l iI O i 2
= -1)
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'Y Ti 9i
P_= I - Di X +

9=i k=l k=l

+ I D i_9,+k,k kX 9_-
z=i+l k=k+l-i

(A4) y+i y+l
+ X I D i_+k,kx _Y

i=-y+l k=k+l-i

i-l~T T+=XoP ijCi_jR- zji

j=O

On the other hand, from the initial condition we know that

=o + "o

or using (4.4)

-1 [ X1 Y+1 1 -.O = Qol"0

(Note: Po = 0 for the smoothing problem.)

LS diag ... .)Qag P

where AA [dag(Pl...PyT)Q
0 ]

These definitions allow us to write out equations for X_y+l..x O , which in

turn yield -i0 uniquely. Then we can combine this with (A4) to obtain a system

of tne form

(A5) 0 i= li + i

where

i F:1, x x

L X0 x [X
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D S + if 1 < Z iDit+k, k + Si,P f1<
k 1

(A6) G i,6 6if y> > i

D Di-z+k,k + S i, Rk=R,+l -i

1
Di + for Y < i

- Di-k+kk+yk= JZ+l - i
(A7) Gi ,2.

0 for k > i

and the elements of z1 are given by

i k-l T -1
(A8) z k = R z + Sk j=O - 1]

If we define

Di_+k, k  if 1 < t < i
k=l

D i -2+k,k if y > 2 > i
k=k+l-i

then (A6) becomes

(A9) G9 , r1 , + S

and

r i+l,k+1 r i- , + Di+1,L+1

Similarly we recognize from (4.16) and (4.17) that

G! = A for X < i
i,2t.-
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A.3 Terminal Condition

Before writing out the terminal equations, some preliminaries are nt.d,

Lemma:

(ATlo) = T i+l(AIO) N-i =  ( AT  N-j + (A )iI+1

Proof: The case i=O follows from (4.2) when k=N. Suppose the result holds

for i. Then (4.2) and the induction hypothesis result in

AN(i4l) = AT-N-i + fN-i-l

= (AT)i+l-JfNj + (AT)i+ 2 + + fN-i-I
j=O

i+l (AT)i+l-Jf + (AT)i+ 2 N

j=0

Let

(All) A Py-l and B= Lo 0
L A.. .A L

Now we can derive equations for - in terms of 4-v From (4.1) we get

4_i = A-i-1  R-i(AlO) Til

(A12) AX_i_l + B( (AT) 1i3fN-j + (AT+N+I)
j=O

(4.9) l j= (AAT~i-CT T l)

= A4i- + o R..=  N-J C4_J) + N(A

For convenience 
define

(A13) Vi = [B(AT)i] = K[AT]I1

I
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and

TR 1(A14) Wi : C• i

where the subscript m indicates the block of the last m rows.

Note that V. is a matrix of order mxn which can be computed recursively.

Taking advantage of the structure of A and B no more than n-m operations are

necessary for each Vi .

Thus using (Al3), (Al4) and (4.6), equation (Al2) gives the relation for

the last m components XNi of- N-i as

i i(A15) xN~ A x IX~~.+ W I Wi - . x. + Vil l
Ni k jO N-J j=o i- 9. N- -y+ , "+'J

Before collecting terms, let k = -j-y, then

x XN-i A AX N-i-l-y+g +  W {i ' -

(A16)
x C x

:A6 - -y 91Wi+k+Y txN+k+k + Vi+l,-N+l

Now apply the index transformation (Al) with j= 1, J= y il =

i= -y. This yields an expression of the form (k = j-k)

-Y i++y-i j+i+-y 0 y
(A17) a£ a + aa9

k . a - j=j-y == +y j=-i+l k=j+y

Also, since Ay+1 = -im we have

(A18) -x + A xN-i 9 k N-i- : -y+•

If we let j : 9-i-l this becomes

y+l y- i

(A19 £=A*£x~l~+£1 i=~~f+i+lxN-y+j

= j~z.
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Now we can use (A17) and (A19) to rewrite (A16):

-Y-i i

0 A + I V. A
This holds fo 0 i y-l.Aftr olecin+trmXivovig N+j for W

(A20) =x+
A2)=j= ~ j= 4-V JZiN-0J

( _ -i j+i+ :jWi+j-9C-kXN-y+j +

j+j-Q R.

+j=y-i+I k=j Wi+j-9C X-k JI + Vilj

This holds for 0 <5 i <_ y-1. After collecting terms involving x N-y+j for

j I> on the left hand side, we obtain a system of equations of the form

(A21) TO t  + R i zyt

where

t XN--y+l t XN2y+I Zl
= ~; , z t  and

i~i

^tt

(A22) zi+ = Wi  Y+_+1j= Zj N-j  Vi+l-,N+ l ,i =0 . . -

and the matrix T r is given by

I j+i-I
4 -i+j +  I Wi ~Cz if I j .< y-i+l

(A23) TO  =

Wi-l+jC9, if y-i+2 s j <y

j

SThis can be defined recursively, too. Let
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=J W i + j _k _I C k , 5 1 <_ j - i + I

(A24) F. ,j

Wi_+jC, y-i+2_ j y

Then for 1 _ j _ y-i+l

i~ -I__1W~ + Fi.,

i+l,j-l £=j- 1i+j-k-1 C - F

Similarly for j > y-i+l:

F= Wil+ _- = WiC- 1  + F i jFi+lj-1 9=j -I

Consequently F satisfies the recursion

(A25) F i+lj-I = Fi. + W.Cj-i

in both cases. Thus, after FIl j and Fi, have been computed, the recursion is

initialized, and

(A2) 0 A+ + F. if 1 < j : y-i+l
(A6 F ij otherwise

To find T1 change the index on the right hand side from j to k-y. Then we

get

ky -i +l-y+kXN-2y+k - k=1i+Y k=l i+k-y-i 9_ N-2y+k

From this we see that for 1 . i : y

0 if k < y-i+l

A 1 if k = y-i+l

(A27) T!,k k-y+i-i
i-~k I Wi jky.C-- if k > y-i+l

iyl I- Ii .l+ky. 9.
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For k > y-i+l define

k-y+i -1
i,k I Wi-I+k-y-9Cx

Z= 1

Then clearly

(A28) T i, k 
= Ti1 l , k+ l

and we only need to compute T. for i z 2, i.e.,

i-l

(A29) Ti, = Wi--kC-

L , n - .. . . .. x
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APPENDIX B

INVERSION OF BLOCK CIRCULANT MATRICES

A matrix of the form

H I HN-1
HN" 1

(BI) Hc

H 
I

LHl1 HNl1 H0 ]j

where Hi itself is a matrix of dimension dxd, is called a block circulant

matrix with dimension N and base dimension d.

Consider the first column of blocks H0 , HNl, ... Hl, and form sequences

of length N by taking the elements in the position (ij) of each matrix, i.e.,

H0 (ij), HNI(i ,j) .... HI(ij)).

Then the inverse of H can be computed efficiently in the following manner:

Step 1: Take the DFT of the sequences H0(ij), HNl(i,j) ... Hl(ij) for each

(i,j) and denote those transforms by NHo(ij), HN.(j),... H(i,j).

Step 2: Compute the inverses

BkHk , for k = O, ... N-I

Step : Take the inverse DFT of the sequences

00o~ ,J), B N _I(iJ) , ... gl(i~j)

and denote the result by

Bo(ij), BN_1(i,J), ... Bl(i,j)
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which gives the first column of blocks of HcCStp : Circulate the blocks B k to obtain the matrix B H H - given by

B0  ,"" BN- ]

B = LlBl

Proof: Since Hc is a NxN block circulant matrix with base d, Hc can be

expressed as a sum of Kronecker product of matrices as

N-I
(B3) Hc= k4 Ck () Hk

(B4) Ck 0

L1 1 C Lo

where each Ck is NxN and each H k is dxd. Define

Hc = F Hc F*

(B5)

N-i
= (F (S) Id)( IO Ck () Hk)(F* () 1d)

k= 0

where F is the NxN unitary discrete Fourier transform matrix. Then by properties

of the cross project of matrices, we get

N-i
(B6) Hc = k0 (F @ Id)(Ck G) Hk)(F* ® 1d)

N-i
(B7) = I (F Ck a) Hk)(F*® Id)

k=0

(N-i

(B8) k 1 (F Ck F*) (DHk! k=O
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Since Ck is a circulant matrix with l's and zeros, the product F C1 F*

is simply a diagonal matrix, Dk, i.e.,

dk(O)) o
dk(1)

(B9) Dk= F Ck F*=
0

dk(N-l)

27 ki
where dk(,) = e- N for k,9. = 0,1, ... N-i

(BlO)

N-1
Hence Hc = Dk @ Hk (BlIl)

k=O

A A

Hc is a block diagonal matrix with the diagonal blocks as H., i.e.,

N-i
k=O k  k

t
Substituting (BlO) results in

A N-1 -j L k
H(i,j =I e N Hk(i,J)

k=O

A

Since H is a block diagonal matrix, the inverse of H is simply the inverse
c c

of each block matrix on the main diagonal.

In order to get B, the inverse of Hc, the inverse DFT is required.

Note that

(H)- (F Hc F*) l

._ = F*)-I Fcl (F)

iHc I F*Hc I F F~l 'H (F
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The inverse of a block circulant matrix is also a block circulant matrix.

This can be shown as follows:

N-l
B can be expressed as B= Ek ( Bk

k=O

where F1 0 *'-0 1F
0 0 1 0 ~o

TE B 0 (* 0 N- 0

N-1Then B H - (F* I I d  IE k B Bk) (F @ Id)

y -(F* Ek F) @ Bk
k=O

It is found that F* Ek F is a circulant matrix. Therefore (F* EkF) ® Bk

is a block circulant matrix. Because summation of block circulant matrices

gives a block circulant; B is a block circulant matrix.
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